Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Arch. endocrinol. metab. (Online) ; 61(5): 470-475, Sept.-Oct. 2017. tab
Article in English | LILACS | ID: biblio-887600

ABSTRACT

ABSTRACT Objective This cross sectional study intended to evaluate two bedside tests (Neuropad and VibraTip) as screening tools for distal symmetrical polyneuropathy (DSPN) in Latin American patients with type 2 diabetes mellitus (T2D). Subjects and methods Ninety-three Colombian patients diagnosed with T2D were recruited. Anthropometric variables, glycemic control parameters, lipid profile and renal function were assessed for each patient. DSPN was defined by a Michigan Neuropathy Screening Instrument (MNSI) clinical score greater than 2. Both Neuropad and Vibratip tests were applied to each patient. Contingency analyses were performed to evaluate the diagnostic power of both tools. Results The prevalence of DSPN determined clinically by MNSI was 25.8%. DSPN in these patients was associated with age, worsening renal function, and insulin treatment. The sensitivity and specificity of the Neuropad test for DSPN was 66.6% and 63% respectively. Its negative predictive value (NPV) was 84.6%. The VibraTip test exhibited a sensitivity of 54.1% and specificity of 91.3%, with a NPV of 85.1%. Conclusion Neuropad and VibraTip are reliable screening tools for DSPN in Latin American population. VibraTip presents a considerable diagnostic power for DSPN in this population. Further studies regarding the cost-effectiveness of these tools in clinical practice are needed.


Subject(s)
Humans , Male , Female , Aged , Polyneuropathies/diagnosis , Point-of-Care Systems , Diabetes Mellitus, Type 2 , Diabetic Neuropathies/diagnosis , Diagnostic Techniques, Neurological/instrumentation , Cross-Sectional Studies , Predictive Value of Tests , Sensitivity and Specificity , Colombia
2.
Rev. méd. Chile ; 144(3): 355-363, mar. 2016. ilus, tab
Article in Spanish | LILACS | ID: lil-784905

ABSTRACT

MicroRNAs are small, non-coding molecules with a crucial function in the cell´s biologic regulation. Circulating levels of miRNAs may be useful biomarkers in metabolic diseases such as type 2 Diabetes Mellitus (DM2), which alters the circulating concentrations of several types of miRNA. Specific serum profiles of these molecules have been identified in high-risk patients before the development of DM2 and its chronic complications. Most importantly, these profiles can be modified with physical exercise, which is crucial in the treatment of metabolic diseases. Acute physical activity alone can induce changes in tissue specific miRNAs, and responses are different in aerobic or non-aerobic training. Muscle and cardiovascular miRNAs, which may play an important role in the adap tation to exercise, are predominantly altered. Even further, there is a correlation between serum levels of miRNAs and fitness, suggesting a role for chronic exercise in their regulation. Thus, miRNAs are molecules of growing importance in exercise physiology, and may be involved in the mechanisms behind the beneficial effects of physical activity for patients with metabolic diseases.


Subject(s)
Humans , Exercise/physiology , MicroRNAs/blood , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/blood , Biomarkers/blood , Risk Factors , Exercise Therapy
SELECTION OF CITATIONS
SEARCH DETAIL